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Extreme Value Distributions in Chaotic Dynamics 
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A theory of extremes is developed for chaotic dynamical systems and illustrated 
on representative models of fully developed chaos and intermittent chaos. The 
cumulative distribution and its associated density for the largest value occurring 
in a data set, for monotonically increasing (or decreasing) sequences, and for 
local maxima are evaluated both analytically and numerically. Substantial 
differences from the classical statistical theory of extremes are found, arising 
from the deterministic origin of the underlying dynamics. 

KEY WORDS: Extreme value theory; local maxima statistics; fully developed 
chaos; intermittent chaos. 

1. INTRODUCTION 

Extreme events are of great  impor tance  in a variety of  p roblems  in not  only 
the physical,  but  also the engineering and environmenta l  sciences, from the 
b reakdown of  a mechanical  structure to the onset of  a severe thunders torm,  
flooding, or  an ear thquake.  ~1'2) Informat ion  on their p robabi l i ty  dis t r ibu-  
tions is thus of  great  value in, among  others, the design of  bui ldings or  
bridges or  the risk assessment of  failure of  a machine.  

There exists a powerful statist ical  theory of  extremes. In its classical 
version ~3'4) it is concerned with sequences Xo ..... Xn_~ of  independent  and  
identically dis t r ibuted r andom variables (iidrv's),  and  the question asked 
is the dis t r ibut ion of  the largest value found in the sequence, M n =  
max(Xo,..., X,,_t) .  Let 

F ( x )  = Prob(X<~ x), a ~< X <  b (1.1) 
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be the cumulative probability distribution of X, with F(a) = 0, F(b) = 1 [if  
a corresponding probability density p(x) exists, then F(x)=~p(y)dy].  
The distribution of M ,  is then evidently given by 

F,,(x) = Prob(Xo ~< x,..., X ,_ ]  ~<x) = (F(x))" (1.2) 

As n increases, the distribution F,(x) shifts toward increasing values 
of x, but if appropriately scaled variables are introduced, a limiting form 
can be attained as n ~ ~ .  A most remarkable result is that under linear 
renormalizations of the form {X,.} ~ {a,(Xi-b,)}, a,  > 0, such limiting 
distributions fall into just three universality classes or types. All of these 
derive from the generic expression 

H p ( x )  = lim Prob(a.(M.-b.) ~<x) 
n ~ o ~  

= lira [ F ( a s  
n ~  o o  

= e x p [  --(1 --fix) a-' ] (1.3) 

where - o o < p < o o ,  f i x < l ,  and Ho(x)=exp(-e-': ). Simple sufficient 
conditions are known for the existence of such limiting distributions when 
F(x) has a density function p(x). 

Intuitively, it would seem that events that are sufficiently rare- -as  is 
the case for extreme events---can indeed be reasonably treated as inde- 
pendent of each other. Actually a more elaborate study t5'6) shows that 
Eq. (1.3) still applies to correlated sequences, essentially as long as the time 
autocorrelation function falls to zero faster than 1/In n. 

It  is by now well established that large classes of deterministic dynami- 
cal systems governed by nonlinear evolution laws and operating under 
constraint can give rise spontaneously to complex behavior in the form of 
abrupt transitions, a multiplicity of states, or (spatio-) temporal chaos. (7) 
It has been suggested that these phenomena may be at the basis of the 
variability of the weather and climate, (8'9~ which constitute in a sense a 
universal source of most of the extreme events encountered in our familiar, 
everyday experience. It is therefore natural to inquire whether a theory of 
extremes can be built for such systems and, if so, to what extent it either 
reduces for practical purposes to the classical statistical theory or, in con- 
trast, bears the signature of the deterministic character of the underlying 
dynamics. Our principal goal in the present paper is to formulate such a 
theory and to provide a first series of illustrations on simple case studies. 
As a byproduct, our approach will allow us to handle problems involving 
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a small or moderate number n of data sets, for which the limiting distribu- 
tions given by Eq. (1.3) do not apply. 

The genera ! formulation is laid down in Section 2, where expressions 
for the cumulative probability F,(x) and the associated density p,(x) for 
the extreme value of sequences generated by an arbitrary one-dimensional 
recurrence are derived. We show that these functions are piecewise analytic 
but are nondifferentiable or discontinuous on a set of points that becomes 
dense as n ~ oo. This suggests that there should be substantial differences 
from the statistical formulation, Eqs. (1.2) and (1.3); a more detailed study, 
carried out in Sections 3 and 4, corroborates fully this idea. 

In Section 3 the general formulation is applied to fully developed 
chaos. Analytic expressions for F,  for the first few values of n are derived 
for the logistic, tent, and Bernoulli maps and confronted successfully with 
the results of numerical simulations. These results bring out clearly the 
striking differences that exist between extreme value distributions in deter- 
ministic chaos and the corresponding classical or "statistical" distributions 
for iidrv's, even though the time series we consider in the former category 
are actually 6-correlated. As n is increased, the probability mass shifts 
toward the right boundary and is eventually concentrated in a layer of 
width of O(n-]). In view of the intricate, increasingly nondifferentiable 
structure of F,,(x) [or  discontinuous structure of p,,(x)] as n becomes 
larger and larger, no explicit analytic expression is available in this limit. 
However, a systematic counting procedure can be worked out which allows 
one to find both the overall ordered structure of the probability distribu- 
tion as well as a tractable model of this structure that can yield good 
approximate numerical values. 

The case of extreme value statistics in intermittent chaos is taken up 
in Section 4. Many of the features found in Section 3 apply to this case as 
well, with one notable exception: owing to the presence of a marginally 
stable fixed point at the lower boundary, the probability mass in the entire 
range from this boundary to the unstable fixed point of the map is depleted 
very slowly, being O(n -1) after n time units as opposed to the typically 
exponential decay found in fully developed chaos. 

In Section 5 a series of results concerning other extremal properties, 
such as distribution of local maxima, are compiled. It is shown that such 
properties are even more sensitive to the deterministic origin of the 
dynamics than the extreme value distribution. Finally, the relevance of the 
results, comparison with experimental data, and some suggestions for 
further study are discussed in Section 6. 
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2. G E N E R A L  F O R M U L A T I O N  

In what follows we shall derive the probability distributions 
extremes generated by one-dimensional endomorphisms of the form 

of 

X,, + l = f (  J(n , /.t ), X ' ~  [ a ,  b ]  ( 2 .1 )  

In particular, we shall be interested in values of the control parameter ~t for 
which the dynamics is chaotic. 

Let p(Xo) be the invariant distribution of the system. The n-time 
probability density that the n -  1 values of the record following the state X0 
are X~ ..... X,_  1, respectively, is 

p,(Xo, X, ..... X , - l )  

= p(Xo) 6(Z, - f ( X o ) ) ' "  J ( X . _ ,  - f ( " -  ~)(Xo)) (2.2) 

where the delta functions account for the deterministic character of the 
dynamics. The cumulative probability for the extreme value in the sequence 
Xo,..., X ,_  t is then 

F.(x) = Prob(X0 ~<x ..... X . _  1 .N<x) 

=I f  dXo' . . f f  dX._,p.(Xo ..... X,,_,) (2.3) 

or, using the well-known representation of the delta function, 

x n-- 1 
F,(x) = Ia dX~ p(Xo) 1-I O(x --f~m)(x0)) (2.4) 

tart ~ l 

where 0 is the Heaviside step function. For x = b all these functions will 
"fire" giving a contribution equal to unity. This leaves us with the norm of 
p(Xo) leading, as required, to F,,(b) = 1. 

The density function p,,(x) associated to F,(x) is obtained by differen- 
tiating both sides of Eq. (2.4) with respect to x, 

II - -  1 

p,(x)=p(x) I-I O(x--fc")(x)) 
r n ~  l 

x n - - I  n - - 1  

+ aXo p(Xo) Z 1-I 
m =  I k =  1 

k ~ m  

6(x-- f(')(Xo) ) O(x-- f(k)(Xo) ) (2.5) 
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or, performing formally the integration using the delta function, 

n - -  I 

p , ( x ) = p ( x )  I-I O(x-- f(m~(x)) 
m =  1 

, , -  l p ( x . . , )  , , -  l 

+,.=~ -.,Z I f ,  m,'(X=,.)[ O(X--Xo,.,) t-[ O(x--f'k'(X~'.,)) (2.6a) 
=I k = l  

k ~ m  

where the prime denotes differentiation and {x~.,} are the preimages of the 
ruth iterate of the map f,  

f~")(x~.,) = x (2.6b) 

At the upper boundary x = b, Eq. (2 .6a)  yields 

, , - '  p( b,,,) 
p,(b) =p(b)+=~_~=] Z ifr I (2.7) 

where f (")(  b~.,) = b. 
Equation (2.6a) shows that p,(x)  possesses discontinuities on a set of 

points for which at least one of the Heaviside functions vanishes, namely, 
at the points 

f ( ' ) (gj)  = Ej, m = 1 ..... n - 1 
(2.8) 

f (k) ( fc- , , ) (~j ) )=~j ,  m = l  ..... n - -1  and k = 0  ..... n - 1  

This set is nothing but the set of periodic points of all periods up to n - 1 
of the recurrence law, Eq. (2.1). For typical recurrences giving rise to 
chaotic dynamics it is a dense set in the limit n ---, 0% and within each inter- 
val delimited by two successive points p,,(x) is a smooth function of the 
same class as p(x). Notice that p,(x)  is not monotonic: differentiating for- 
mally Eq. (2.6a) with respect to x, one obtains a series of contributions 
weighted by the derivative of the function f ( x )  or iterates thereof, whose 
signs alternate according as one is in an ascending or descending branch of 
the map concerned. We may refer to a function of the kind just described 
as a generalized devil's staircase, in analogy with the more familiar devil's 
staircase arising in the study of phase locking in the circle map. "~ On the 
other hand, the corresponding cumulative distribution, Eq. (2.4), will be 
monotonic, since all terms in Eq. (2.6a) are nonnegative. It will be non- 
differentiable at the discontinuity points of p,,(x). 

The above features show already that the extreme value distributions in 
chaotic dynamics are very different from those familiar in statistical theory, 
Eq.(1.2), since, for one thing, these latter distributions are, typically, 
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smooth functions of x. A more detailed study, performed in Sections 3 
and 4, will provide further qualitative and quantitative information on the 
nature and extent of the difference. 

A detailed evaluation of the distributions F,,(x) and p,,(x) requires 
knowledge of the iterative function f. In Sections 3 and 4 such an evalua- 
tion will be carried out on two representative classes of chaotic dynamics: 
fully developed chaos and intermittent chaos. 

3. FULLY D E V E L O P E D  C H A O S  

We now turn to the application of the foregoing formalism to maps of 
the unit interval that exhibit fully developed chaos. Throughout this section 
we use the Bernoulli shift f(Xo)=2X0 mod 1 (which has a discontinuity), 
the tent map f(Xo)= 1 - [ 1  -2Xol  (which has a nondifferentiable point), 
and the logistic map f(Xo)=4Xo(1- X0) as representative examples. 

3.1. F.(x) for  Smal l  Vaues of n 

Figures 1-3 display the results for F,,(x) for these maps obtained by 
numerical simulation in the small-n cases n = 2, 3, and 5. The piecewise 
analytic nature of F,(x) is clearly evident in each case. Now, the invariant 
densities for the above-mentioned maps are 1, 1, and 1/rc[x(1-x)] ~/2, 
respectively. Had the variables (.go ..... X,,_~) been iidrv's, therefore, F,,(x) 
would have been given by the smooth functions 

F,,(x) = x "  (Bernoulli, tent maps) (3.1) 

and 

F.(x) = [(2/zO s in - '  x /~]"  (logistic map) (3.2) 

respectively. As the time autocorrelation function < ( ,go-  < X> )(Xj-- < X>))  
is proportional to gj.o in each of the three cases under consideration, t~''2) 
one might imagine that the corresponding extreme value distributions 
would also be given by the iidrv expressions of Eqs. (3.1)-(3.2). However, 
a g-function autocorrelation does not necessarily imply a factorization of 
joint probability distributions. In short, the signature of the deterministic 
dynamics is indeed quite pronounced in the extreme valiae distributions--in 
both its quantitative and qualitative aspects for small n, and at least 
qualitatively for larger values of n. 

The actual expression for F,,(x) for small values of n can be evaluated 
directly from the general formula of Section 2, or, equivalently, with the 
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help of a geometrical construction to be described shortly. For the tent 
map, we find the piecewise linear expressions 

x 

F~(x )  = 

2 x -  1, 

r X 

-~, 

7 x - 4  
F3(x) = 4 ' 

3x - 2, 

2 
O ~ x ~  

2 
~ x ~ l  

2 
0 ~ x ~ 5  

2 4 
5<x<~ 
4 
~ < x < l  

(3.3) 

(3.4) 

These are precisely the functions found by numerical experiment; cf. 
Figs. 1-3. The nonmonotonic behavior of the slope of F,,(x) [i.e., the 
density p , (x) ]  for n i> 3 should be noted. 

Likewise, for the logistic map (which has a fixed point at 3/4) we find 
the piecewise analytic function 

1 sin.-l x//x, O~<x~< 3 

FE(X) = 3 
sin-I  , v / ~ -  1, ~ < x ~ < l  

(3.5) 

The slope p,,(x) is infinite at both x = 0 and x = 1. Similarly, F3(x) in this 
case is found to be made up of three smooth functions, with breaks in the 
slope occurring at 3/4 and (5+~/5 ) /8  (the largest fixed point of the 
iterated map f(2)), respectively. 

In the remaining part of this section we shall use the tent map for a 
case study in detail. The evaluation of the integral formula (2.4) for F,,(x) 
with its 0-function constraints may be interpreted graphically as follows. In 
Fig. 4 we have sketched the maps fro) through ft3), corresponding to the 
case n = 4, i.e., the maps relevant to the evaluation of F4(x). For any given 
value of x in [0, 1], F4(x) is obtained by integrating p(Xo) over those 
intervals of Xo in which x/> {f(Xo), f(2)(Xo), f(3)(Xo)}. Representing the 
value of x by a horizontal line at a height x above the Xo axis on the left 
of the bisectrix x =.go, the range of integration is over those graphs in 
which there are no segments of map functions between the horizontal line 
and the "roof" at 1. The possible ranges for different values of x are 
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F2(x) 

I 

O.S 

0.6 

0.4 

0.2 

Bernoulli n=2 
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I 
' logistic n=2 

J f 
i i i | 

0.2 0.4 0.6 0.8 

Fig. I. Cumula t ive  probabi l i ty  d is t r ibut ion for the extreme value F2(x) for the Bernoulli ,  
tent, and  logistic maps  deduced numerical ly  using 100,000 real izat ions and a mesh size 
Ax=O.O1. 

indicated by dark lines in Fig. 4. As p(Xo) = 1 in this case, F,,(x) is simply 
given by the total length of such ranges for any given x. [ We have seen in 
Section 2 that, in general, F.(x)  is piecewise linear whenever p(Xo) = const, 
and piecewise analytic for maps with a smooth invariant density.] A dis- 
continuous increase in p.(x)  occurs whenever a new contribution (or a sum 
of such contributions) is added to F.(x)  as x increases past a critical value 
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Fig.  2. As  in  Fig.  1, b u t  for F3(x). 

such as 2/3 or 4/5 or 8/9 in Fig. 4. On the other hand, the rate of increase 
of F,(x) drops as x crosses a critical value like 6/7 in Fig. 4, i.e., p,(x) 
decreases discontinuously at such a value ofx. 

Both types of crossings occur at x values corresponding to a fixed 
point o f f ( x )  or iterates thereof. In Fig. 4 they are depicted as intersections 
o f f - -  f~ ~ ~, fl27, and f~3~ with the bisectrix. We notice, however, that for the 
same value of x, simultaneous intersections (not at fixed points) among the 
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Fs(x) 

1 

0.8 

0.6 

0,4 

0.2 

Bernou~ a=5 

0.2 0.4 0.6 0.8 x 

Fs~x) 
1 

0.8 

0.6 

0.4 

0.2 

te~t n=5 

o12 0.4 0.6 0.8 

FS(~) t Log'L~c n=5 

0.4 

0.2 

0 

Fig. 3. 
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As in Figs. 1 a n d  2, bu t  for  Fs(x). 

higher iterates o f f  occur to the left of  the bisectrix. For  example, at x = 2/3 
the iterates f(2) and f(3) intersect at X 0 = 1/6, etc. Intersections of  the first 
type, where a new "valley" opens up, will be referred to as R-type intersec- 
tions; and those of  the second type, where a change of  slope of  the lines 
delimiting a valley occurs, will be referred to as L-type intersections. It is 
important  to note that at a given critical value of  x all the intersections are 
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x < l  

x<8/9> 
x <6/7> 

x<tdS> 

x<2/3 _ 

0 X o I 

Fig. 4. Maps f(0) to f(3) involved in the evaluation of F4(x) for the tent map. 

necessarily of the same type, either R or L. This explains why the con- 
tinuous, monotonically increasing function F,(x)  has a steplike behavior, 
owing to the temporary drop in slope at each L-type intersection. 

3.2. Larger n: Initial Stages and Growth  of F,,(x) with x 

Let us now consider a general, large value of n. It is immediately 
evident that the initial segment of F,,(x) arises from a single "gap" and is 
given by 

F.(x) F:/~"-' X x ~<~ = d o = 2 . _  I, O<~x (3.6) 

with x = 2/3 being the fixed point of the map. As x increases past this 
value, n -  1 additional gaps of equal length open up, and this situation per- 
sists till x reaches the value 4/5, the largest fixed point of the once-iterated 
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(11 C 
~0--  

• 

Fig. 5. Sequence of multiple intersections at { ~')} = (0, 2/3, 4/5, 14/17,...). 

map f(2). The length of  each of these new gaps is that between the lines 
2"-2Xo and 2 - 2 " - ) X o  at ordinate value x. This yields 

( 3 n - 2 )  x - - 2 ( n -  1) 2 4 
F,(x)- 2,_1 , ~ < x ~ < ~  (3.7) 

One might imagine, based on Fig. 4 (which corresponds to the case n = 4), 
that a simple R-type intersection [o f  the level line x, the bisectrix, and a 
branch o f f 2 ) ( X 0 ) ]  occurs at the value 4/5. However, this is not  true for 
n i> 9, because 4/5 is also a fixed point o f f  s). The next fixed point o f f  Is) 
occurs at 14/17, which is also a fixed point o f f  (16), and so on. The picture 
that emerges is sketched in Fig. 5. One therefore has successive "multiple" 
R-type intersections at values of  x given by the infinite sequence 

~ | )  = O, ~ 1 ) ~  3, ~(I) _~4 ~(31) 14 ~ 1 )  212 _ ~, = 17, - 2s7 .... (3.8) 
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[the reason for the superscript (1) will become clear shortly]. From the 
geometry of Fig. 5, we can deduce the recursion relation for the points ~ ) :  

~ ) =  (22k- ' -1 )~1~-~+2,  k>~l (3.9) 
22~-~ + 1 

where ~.~ot)= 0. The explicit solution is 

k - - i  

~1)=  1 - ( 2 2 k -  1) -1 1-I ( 22 ' -  1) (3.10) 
/ = 0  

which converges extremely rapidly (superexponentially!) to the limiting 
value ~(t) = 0.824908... (which is less than 6/7). Therefore, for any given suf- 
ficiently large n, the slopes of the successive segments of F,(x) increase in 

:(l) where 1 + [log2(n - 1 )], jumps with increasing x, at least until x = ~q , q = 
[.  ] standing for "the largest integer in." However, the probability mass in 
this range of x remains exponentially small for very large values of n, 
because the contribution from each gap is bounded from above by 1/2"-~, 
the multiplicity of new gaps at each ~:)  increases no faster than a power 
of n, and the sequence covers an extremely short range of x beyond the first 
few points. 

Similar sequences of "multiple" R-type intersections occur at higher 
values of x, beyond :(t) The next such sequence is determined by common ~ o c , "  

fixed points o f f  (3), f(6)f(12),.., ad #~'nitum, given by the recursion relation 

~ ? ) -  (232k-' - 1) ~3-~ ~ + 2 k>_-I (3.11) 
23"2k- I "4- 1 

with ~3)=6/7.  Thus ~]3)=8/9, ~a)=58/65,  and so on. This sequence 
converges even more rapidly than that of Eq.(3.10), to the value 
~ )  =0.892360 .... Such sequences ~e) exist for all odd integers p, and 
as n ~ ~ ,  more and more of them begin to occur: the general recursion 
relation for these points is 

~ m _  (2"2k-'  - 1 ) ~i~ + 2  
. - ~ ( 3 . 1 2 )  

2P'2k-' + 1 

where p = 1, 3, 5 .... and k = 1, 2 .... for each p. [This explains the notation 
r used earlier for the original sequence in Eqs. (3.8)-(3.10).] The explicit 
solution to Eq. (3.12) is 

~(,m= 1 - ( 1  - ~CoP))(2P- 1) (2 :+  1 ) - '  
k-2 (3.13) 

~Y>=-l--(1-~CoP))(ZP-1)(2r~'k-~+l)-~ 1-[ (2 :2 ' - -1 ) ,  k~>2 
I = 0  
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As p increases, more than one such sequence can occur for a given value 
of p, but the total span of each sequence decreases extremely rapidly. For 
a general odd number p > 3, there are in fact (2 p - 3 -  1 ) distinct sequences, 
with starting points ~o p) given by (2 p -  2r)/(2 p - 1 ), where r runs from 1 to 
(2 p - 3 -  1). Thus for p = 5, for instance, we have three sequences starting at 
26/31, 28/31, and 30/31, respectively. As already mentioned, however, the 
total probability mass in these sequences is extremely small. Moreover, for 
a given value of n, any sequence {~(,P~} is cut off at 

l+[og l 

as the highest iterated map involved in F,,(x) is f ~"- I). 

3.3. Behavior of Fn(X ) Very Close to x =  1 

Based on the foregoing, one might be tempted to conclude that the 
probability mass in Fn(x) is concentrated in an exponentially thin layer 
[of  width perhaps 0 ( 2 - " ) ]  near x =  1, for large values of n. We shall 
subsequently show that this is not so: in terms of measure, the behavior 
of F,(x) is quantitatively similar to that of the "statistical" or iidrv expres- 
sion [F(x)]"=x". The latter quantity has a total probability mass 
1 - ( 1 - n - ~ ) " ~  1 - e  -~ in a layer of width n -~ at the upper boundary 1. 
We shall establish a similar result for F,(x), as far as the probability mass 
is concerned. The actual functional structure of F,(x) is, however, 
completely different from that of the smooth function [F(x)]" .  This aspect 
will be discussed further in the next subsection. Here we examine Fn(x) in 
the immediate vicinity of x = 1. 

The general scenario that obtains very close to x = 1, for large values 
of n, is shown in Fig. 6. In constructing F,(x), it turns out to be more con- 
venient to compute increments to the piecewise constant density p,(x) and 
then use the fact that Fn(x ) is continuous. Now F , ( 1 ) =  1, and Eq. (2.7) 
applied to the tent map yields p~(1)= n. We therefore have immediately 

F,,(x)=nx--(n-1), x e  1 2 , _ i + 1 , 1  (3.14) 

The lower limit in the above range of x follows from the fact that the criti- 
cal point immediately below 1 is the largest fixed point o f f  ~"-~, i.e., the 
solution to 2 ~ - l - 2 " - l X o = X  o. Below this value of x, the contribution 
from the single gap between the lines 2 " - ~ - 2  n- ~X o and X o vanishes, and 
this situation persists until we go down to the next critical point, the 
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(a) 

(n!11 ] (n!!l (hill I (n!l] 
(n-Z) (n-Z) 

(n-.t) 

-j 
(n!!~ I[n-ll tn!1~ I I fin-l) (n-Zl (n-Z) 

In-J) 

(n-4.l 

(n-S! 

(b) 

f(n-l) 

2n-t_zlj-1] 
(Z n-I +I I 

2n~12j- !) 
2n-t 

(2n_/2j) 
( 2 n-! -1 ) 

Y 

Fig. 6. Scenario close to x =  1: (a) hierarchy of peak positions of the iterated maps in the 
range I - 2  ~< x ~< I; (b)closer up sketch of the L and R intersections associated with the j t h  
peak (counting leftward from I ) of the iterate f("-~).  
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penultimate fixed point of f ( " - ] ) ,  given by 2 " - ] X o - ( 2 " - ~ - 2 ) = X o  . 
Subtracting this contribution (= the  length of the gap) from nx- (n -  1), 
we get 

F,(x)=(n--l--2,1-~_l)x--(n--2), x ~ [ 1  
1 1 ]  

2 " - 1 - I ' 1  2 " - I + 1  

(3.15) 

To proceed, it is helpful to note the following. The size of the gap at ordinate 
level x in the valley formed by the intersection of the lines cl-m]Xo and 
m2Xo-c2 (ml , rn2>0)  is (mT]+mzl)X--clm7l+c2m; l, so that the 
increment to p,(x) arising from this gap is just mi -] +m~ -~. In general, 
therefore, to find the increment to p,(x) at any R-type critical point, we have 
merely to add up the reciprocals of the magnitudes of the slopes of all the 
lines delimiting the valleys that open up at that critical value x. An obvious 
modification of this rule applies at L-type intersections. 

To deduce the value of F,,(x) immediately below x = 1 - (2"-  l _ 1 ) - l ,  
we must subtract the three contributions that open up as x increases past 
the critical point 1 - ( 2 " - 2 +  1 ) - ]  from below (one from the intersection of 
f(, ,-2) with fool, and two from the intersection o f f  t"-]) with f(~)). The 
result is 

F,(x)=(n-21-~-5_2)x-(n-1-2~I--~), 

1 1 1 (3.16) xE 1 2,,_2+ 1,1 2 , _ i  1 

Similarly, in the next range we find 

[ 1 1 ] 
x~  1 2 , , _ Z _ l , 1  2 " - - ' + 1  (3.17) 

and so on. The up-and-down variation of the slope p,(x) is immediately 
evident from these results. 

In principle, we could go on in this fashion to ranges of x farther and 
farther away from x = I. Our interest, however, is in identifying the extent 
of the layer near x = 1 supporting the bulk of the probability mass. This is 
done in the next subsection. 
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3.4. Probabil i ty Mass in the Layer 1 - n  -1 ~<x<~l 

To a very good approximation, the layer of width of order n - I  just 
below 1 can be modeled as in Fig. 6: successive L- and R-type intersections 
of the bisectrix by a hierarchical arrangement of the highest iterates f ( ' -  ~), 
f(, ,-2) .... that occur in F,,(x). The basic interval between successive peaks of 
the maps at ordinate 1 is 21 -n. Let us consider a range [ 1 - 2 ,  1 ] of x, and 
for definiteness choose 2 such that it is just larger that 2 . . . .  , so that there 
is a single peak o f f  ( '-~) just to the right of 1 - 2 .  Then x =  [ n - l o g 2  n] 
ensures that 2 .~ n -~. The problem of finding F , ( x )  is now that of counting 
the number of L- and R-type intersections on the bisectrix and the number 
of simultaneous intersections occurring to the left of the bisectrix for each 
of these, and then adding up all the contributions. 

The calculation is greatly facilitated by two lemmas. 

L e m m a  1. At an R-type intersection o f f  ( " -~  with the bisectrix at 
the point ~R, the increase in the density p , ( x )  is given by 

p , , ( X = ~ R + O ) - - p , , ( X = ~ R - - O ) = I ( 1  + 2  ~- ')  (3.18) 

Similarly, at an L-type intersection o f f  ("-~) at ~L, the change in p,,(x)  is 
given by 

p,,(x = ~r  + O) - p, ,(x = ~L -- O) = --l( 1 -- 2 t - ' )  (3.19) 

TO prove this, we have only to note that at the level x = ~R (or ~L), 
we have simultaneously one intersection between f ( " - t )  and f(o), two inter- 
sections between f(, ,-/+1) and f(1), 2 2 between f(n-t+2) and f(2) ..... 2/-1 
between f ( " - i )  and f ( t - l ) .  Therefore, using our earlier observation [made 
below Eq. (3.15)] on the increment of p,,(x) at an intersection between two 
lines, we have 

- , ( 1  1) 
P , , ( X = r 1 6 2  = Z 2m I'- (3.20) 

" = o 2 "  + m  

and 

p n ( X = ~ L + O ) - - P , , ( X = ~ L - - O )  = E 2" (3.21) 
m=O 2" +" 

from which Eqs. (3.18) and (3.19) follow at once. 
The second lemma gives the change in F , ( x )  itself. Now, the j t h  peak 

off t"- I ) (Xo)  (counting leftward from 1) occurs at Xo = 1 - (2j-- 1)/2 "-I. 

822/80/1-2-21 
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The L- and R-type intersections of the ascending and descending branches 
o f f  ( ' - t)  associated with this peak occur at ~L = 1 - - (2j - -  1 )/(2 n - ~ -  1) and 
~R = 1 - - ( 2 j - -  1)/(2n-t+ 1) respectively. We then have the following result. 

L e m m a  2. If F,,(x) = m x  + c just above x = ~R, then 

( l - - x ) /  
F,,(x) = m x  + c + 2,,_/_-------- F (3.22) 

just below x = ~L" 

TO prove this, we have merely to use Eqs. (3.20) and (3.21) and the 
continuity of F,,(x) at ~R and ~L. It is noteworthy that there is no 
dependence on j, the label of the peak o f f  ("-I), in Eq. (3.22). This is not 
true, for instance, for F,,(x) in the intermediate region ~L < X < ~S- 

With the help of Eq. (3.22), we are finally ready to reconstruct F , ( x )  
at x =  1 - 2 .  In this region we have 2 ~-t-~ peaks o f f  ("-t), where 1 runs 
from 1 to x - 1 ,  and a final peak o f f  I ' - ' ) .  Therefore, setting 2 = n  -~, or 
x ~ n - l o g 2 n ,  and using Eqs. (3.14) and (3.22), we get 

F n ( 1 - - n - l ) ~ - - n x - - ( n - - 1 ) + ( 1 - - x )  + ~ 2 K - t - l - .  2n-/-I 
/ = 1  

(n - log2 n)(n - log2 n + 3) 
- 2n 2 (3.23) 

This is quite comparable to, although a bit larger than, the value 
( 1 -  n - I ) "  ( ~  e -~ as n---* oo) that obtains for iidrv's. We note, however, 
that Eq. (3.23) is an overestimate, as we have replaced the smaller actual 
contributions from those multiple intersection sequences {~P)} that occur 
in the region 1 -  2 ~< x ~< 1 by somewhat larger ones from simple L- and 
R-type intersections. 

Figures 7 and 8 depict the results of numerical experiments for a 
moderately large value of n (= 100) that corroborate our theoretical con- 
clusions regarding the behavior of p,(x) and F~(x). The up-and-down 
steplike form of p,,(x) is strikingly evident, in contrast to the iidrv predic- 
tion n x  n - I =  100x 99. Although integration makes this behavior somewhat 
smoother, Fn(x)  is still qualitatively quite different from the iidrv distribu- 
tion x". It is clear from our theoretical analysis and the actual numerical 
experiment that these differences will persist even if n becomes very large, 
and that in the layer of width O(n - ] )  about 1 the scenario depicted in 
Figs. 7 and 8 will continue to be valid for any value of n. It is only in 
the f inal,  exponentially small  range of x of order 2 - "  {to be precise, 
in [ 1 - ( 2 " - 1 + 1 ) - 1 ,  1]} that the exact expression for F~(x),  namely 
nx - n + 1, coincides with the leading behavior of x" in the limit x ---, 1. 
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P=oo (.x} 

120 

0 
0.98 0.985 0.99 0.995 x 

Fig. 7. Probability density for the extreme value p,(x), n = 100, for the tent map in the range 
0.98~<x~<1 deduced numerically using 100,000 realizations. The size of the bin used is 
zfx= 3.33 x 10 -4. The dashed line represents the iidrv prediction, 100x 99. 

As mer/tioned in the Introduction, the most important classical result 
for iidrv's (and even for correlated random variables, under fairly general 
conditions) is the existence of just three universality classes of limiting 
distributions for linearly rescaled variables. For the tent map under con- 
sideration, and also for the Bernoulli map, the probability distribution 
IF(x) ]"  = x" falls, via the rescaling a, = n -~ and shift b,, = 1 - n -  1, into the 
domain of attraction of the limiting distribution 

Hi(x) = lira ( n - i x +  1 - -n-1)"=exp(x  - 1), x~< 1 (3.24) 
n ~ o o  

Similarly, the classical theory for iidrv's s h o w s  16) that the distribution 
[F(x)]" in the case of the logistic map, Eq. (3.1b), tends to the limiting dis- 
tribution e x p [ - ( 1 -  x) ~/2] for rescaled variables. However, the piecewise 
analytic nature of the correct F,(x), with breaks in the slope at a dense set 

F1oo(Xl 

0.8 ," 

0.6 

0.4 

0.2 

l I f 

0.99 0.985 0.99 0.995 �9 

Fig. 8. As in Fig. 7, but for the cumulative probability distribution, F~oo(x). The dashed line 
represents the iidrv prediction x ~~176 
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of points as n ~ oo, precludes the possibility of the existence of such simple 
limiting extreme value distributions, under linear rescaling, of sequences 
generated by chaotic dynamics. 

4 .  I N T E R M I T T E N T  C H A O S  

Next, we turn to extreme value statistics in the case of intermittent 
chaos. Specifically, we consider the example of the square root cusp 
map f ( X  o) = 1 - 2 IXol 1/2 Xo e [ - l, 1 ], with invariant density (13) p(x) = 
( l - x ) / 2  and corresponding cumulative probability F (x )= (1  + x ) ( 3 - x ) / 4  
= l - - p 2 ( x ) .  The rapid shrinking (owing to the cusp) of the window about 
Xo = 0 that is injected into the vicinity of the marginally stable fixed point 
at Xo = - 1  in two iterations, the slowing down associated with the latter, 
and the existence of a nontrivial, slowly decreasing time autocorrelation 
function (~2'~3) may be expected to produce some new features in F.(x). For 
ready reference we note that, if (X 0 ..... X ._  t ) had been iidrv's, F,,(x) would 
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Fig. 9. (a) Extreme value probability density and (b) cumulative probability distribution, for 
n = 2 for the cusp map as deduced from numerical simulation using 100,000 realizations and 
a mesh size of ,dx = 0.001. 
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have been [ F ( x ) ' ] n = [ 1 - - p 2 ( x ) ]  " in this instance. The corresponding 
classical limiting distribution for rescaled variables would have been 
exp[ -- (1 - x)2]. 

4.1.  F.(x) for  S m a l l  n 

The distribution F2(x) is easily calculated, and is given by 

F2(x)=~ ~-�89188 0~<x~<3--2 x/2 (4.1) 
[1 - 2p2(x), 3 --2 v/2 ~< x ~< 1 

where, as already mentioned, p(x)= ( 1 - x ) / 2 ,  and 3 -  2 x/~ is the fixed 
point of the map. Similarly, F3(x) has two breaks in slope, and so on. 
Figures 9 and 10 represent the results of numerical simulation for F2(x ) 
and F3(x) and the corresponding densities p2(X) and p3(X). 

We now show that, for arbitrarily large values of n, the behavior of 
F,,(x) is strongly controlled by the intermittent nature of the map. 
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As in Fig. 9, but for p3(x) and F~(x). 
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4.2.  B e h a v i o r  Near  x =  1 

The basic property that we need to note for our present purposes is 
the following: If("r(Xo)l  = 1 at 2" 0 = + I  for all m/> 1. This means that the 
branches of the iterates f(")(X'o) become extremely steep as m gets larger, 
because the positions of the peaks (and hence the fixed points, too) only 
move very slowly toward the ends 4-1. It is this relatively slow rate of con- 
vergence that is crucial. 

Let ( -  1 + 4u", 1 -4Urn) be the values of X o at which the first and last 
peaks off(")(2"0) occur. It is then easy to show that u"+] =u"(1--Urn),  
with u~ = I/4. This is just the logistic map at parameter value 1, at which 
the fixed point uo~ = 0 becomes marginally stable (this is the reason for the 
slow convergence of the sequence u,,). The asymptotic behavior of Um is (~4) 

u"=m -l  + O(m -2 logm)  (4.2) 

Moreover, the position of the final zero o f f  (") is also that of the last peak 
o f f  ("+~). These facts imply that, when n is large, the last fixed point x* 
o f f  ( " -  1)(Xo) satisfies 

4 4 
1 -  < x * < l - -  (4.3) 

n - 1  n 

The final segment of the piecewise analytic function F,,(x) obtains in the 
range x* ~<x~< 1, which is, by (4.3), a layer of width of order n -~. Since 
p(1) = 0  and the slope of any f ( " )  at every preimage of 1 is infinite, 
Eq. (2.7) yields p , ( 1 ) = 0  for every n. Very close to x =  1, Eq. (2.5) gives the 
leading behavior 

1 n - - I  

p, (x l=p(x)+ I dXop(Xo) ~ ~5(x--f(m)(XO)) 
--1 m = l  

=np(x) (4.4) 

on setting x = 1 in the 0-functions and using the Frobenius-Perron equa- 
tion for the invariant density p(x). Integrating this result, we have 

F,,(x) ~ 1 --np2(x) (4.5) 

in this final range of x. Figures 1 la and 1 lb show the results of a numerical 
experiment on extreme value statistics in the cusp map for n = 100. These 
results, and similar ones for other values of n, are in close agreement with 
the theoretical predictions derived above. 
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Fig, 11. As in Fig. 10, but for p~oo(x) and F, oo(x). The dashed line represents the iidrv 
prediction [ 1 - p2(x)] 10o. 

4.3. Behavior  Near  x =  - 1  

Since F ( x ) - - - . ( l + x ) ( 3 - x ) / 4 ,  the iidrv expression [F(x) ]"  would 
imply a very rapid vanishing [like ( l + x )  " -~]  of the corresponding 
probability density as x ~ -1 .  In reality, however, since I f ( " ) ' ( -  1)1 = 1 
for every iterate of the map, we find a totally different behavior. For 
0 <% x <~ 3 - 2 v/2, F,(x) is given by 

~ - -1  + oJn-  t ( x )  

F,(x) = dXo p( Xo) (4.6) 
--1 

where - 1 + co,_ i(x) is the smallest root of the equation f("-I~(Xo) = x, 
i.e., of the equation 

1 - 2 1 2 [ . . . [ 2 ( - X o ) ' / u - 1 ] ~ / 2 . . . ] l / z - 1 ] ' / 2 = x  (4.7) 
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To leading order in ( I + x), this yields co,_ ](x) = (1 + x). Therefore from 
Eq. (4.6) we find the leading behavior 

and F,,(x)  = 1 + x (4.8) 

p.(x)=l (4.9) 

as x ~  - 1 ,  for a l ln .  A comparison of Figs. 9 and 10 (n =2 ,  3) and Fig. 11 
(n = I00) shows that the density p , ( x )  drops rapidly to practically zero 
from its initial value of unity as x moves out from - 1 ,  particularly for 
large values of n. It begins to rise again only beyond the fixed point, very 
slowly at first, and then ever more rapidly. In reality this is not a smooth 
rise, but rather a series of jumps or serrations at the points of non- 
analyticity of F , ( x ) ,  as is clear from Fig. 12a. 
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Fig. 12. (a) Density p.(x) and (b) cumulative probability distribution F.(x) for n = 50 (solid 
line), 60, 70. 80, 90, and 100 (broken lines). Note the serrations in p.(x) in its "ascending" 
range and the slow decrease of the plateau value of F.(x) with increasing n. 
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As a consequence of the behavior of p,,(x) described above, F,,(x) 
[which starts out as in Eq. (4.8)] has a long "plateau" region. Its value in 
the plateau is given by the contribution from the single "gap" between - 1  
and the first ascending branch o f f  I"- ~l(Xo) , and a convenient measure is 
its value at x = 0: as we have already mentioned, the first zero o f f  ~'- ~(Xo) 
is also the position of the leftmost peak off~"~(Xo). Therefore this position 
is given, asymptotically, by Xo = - 1  +4n  - l ,  yielding the asymptotic 
estimate 

f I +4n-I 1 --Xo 
F,,(0) ~ dXo ~4n -I (4.10) 

_~ 2 

For n = 100, this is already accurate to within ~ 8 % of the exact value. [ In 
the latter, the factor n - ' = 0 . 0 1  in the upper limit of integration in 
Eq.(4.10) is replaced by 0.009396 .... ] 

This persistent layer of probability mass at the lower end of the range 
of the variates X;, which scales (rather slowly) like n -~, is perhaps the 
most striking feature of the extreme value distribution in the case of inter- 
mittent chaos. 

5. LOCAL M A X I M A  AND OTHER EXTREME VALUES 

There are several other extreme value statistics that one could consider 
i n  order to identify other possible distinctive signatures of chaotic 
dynamics. One such statistic that readily comes to mind is the probability 
of an increasing (or nondecreasing) sequence {Xi}, i.e., Pr(X0~<X 1 -.. ~< 
X,,_ ~ < x ) =  ~,,(x). If the {X;} are iidrv's, this distribution would be simply 
[F(x)]"/n!. In contrast, in the one-dimensional chaotic dynamics we have 
been considering, 

�9 ,,(xl---J'j dX,,_, dX,,_z.., dXop(Xo) I-I 6(X, , - f (X , ,_ , ) )  

It is convenient to recast this relation in the form 

~,,(x) = dX,,_ 1 dXop(Xo) O ( x - X m _ l ) . . . O ( X  1 --Xo) 

x J(X,_, --f~"-'~(Xo))... J(X, - f (Xo))  (5.1) 
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For symmetric one-humped maps, Eq. (5.1) can be greatly simplified: 
~ . ( x )  is piecewise analytic, with just two segments. The break in slope 
occurs at the nontrivial fixed point of the map, f ( g )  = ~. We find 

~(x)=I~'(x)dXop(Xo), a<~x<~.~ (5.2) 

where x~(x) is the smallest root o f f  Cn- ~)(Xo)= x, and 

_I xI~"~ ~n(x) = "q(x) dXop(Xo)+ dXop(Xo), .~<~x<~b (5.3) 
- a  ( x )  

where x2(x) is the next root o f f  ("- ~)(Xo)= x, and x~i~ is the smallest root 
off(n-])(Xo) =f("-2)(Xo). Notice the relation x2(g ) = Xmi~" 

Applying the foregoing to the tent map, we get 

I x 2 
2Z-_~, 0<~x~<~ 

�9 .(x) = i x -  1/3 2 
(5.4) 

This is to be compared with the iidrv result x"/n!. In particular, the total 
probability of a nondecreasing sequence of n successive members of the 
time series is 23-"/3 (n ~>2), instead of l/n! (implying an exponential, 
rather than n -n, falloff with increasing n). 

Another important statistic, and one that involves the short-time 
behavior of the dynamical system, is the distribution of local maxima: 
focusing on any three successive members (X o, X1, X2) of a time sequence, 
and given that the distribution of Xo is governed by the invariant density 
p(Xo), what is Pr(Xi ~<xl Xo, X2 < Xa)---~b(x)? This tells us how the local 
maxima ("spikes") are distributed in the time series. 

If the three variables are iidrv's, the above probability distribution is 
given by 

Pr(X~<~xlXo<X,,X2<X~)=~b(x)= dXop(Xo)F2(Xo) (5.5) 

yielding x3/3 for the tent map. Coming now to the case of time series 
generated by deterministic chaos, we first note that a given recurrence law 
may not permit all possible sequences. For instance, it is easy to see that 
the tent map does not permit a sequence of the form .go < X~ < X 2, 
X2 >-t"3 > 2"4. More quantitatively, the exact expression of ~k(x) is 

I? ~k(x) = [" dX, dXo dX2 p(Xo) 6(X, - f (Xo)  ) 6(X2 -f(2)(Xo)) (5.6) 
Oa 
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For the class of maps we have been considering, ~O(x) is identically zero in 
the range a ~< x ~< ~, where ~ is the nonzero fixed point of the map, as 
before. Specifically, we find the following results: 

�9 For the Bernoulli shift, 

f 
O, O~<x~ 1 

@(x)= 2 1 1 
--- , ~<x~< 1 

(5.7) 

Therefore the total probability is ~O(1)= 1/4 rather than 1/3, as one might 
have imagined at first sight. 

�9 For the tent map, 

~'0, 0 ~< x .< q,(x) x 2 (5.8) l - ~ ,  2~<x~<l 

The total probability is 1/3, as expected. 

�9 For the logistic map, 

0 i 0. x. 3 
~b(x) = 2 3 

sin 

(5.9) 

The total probability is 1/3, although the interval of integration over 2"0, 
when x =  1, runs from 1/4 to 3/4. Weighting with the invariant density 
reduces ~b(l) from 1/2 to 1/3. 

�9 For the cusp map, which is not ~-correlated, 

03' --1 ~<x~<3-2~v/~ 

~b(x)= 2x /~  (1-x)24 ' 3 - 2  x /~<x~< 1 (5.10) 

The total probability is 3 -  2 x/~ in this case. 

Figures 13a-13c show the results of numerical experiments for the 
Bernoulli, tent, and cusp maps. They agree with the expressions given 
above, and are quite different from what would obtain for independent 
random variables distributed according to p(Xo) in each case. 
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Fig. 13. Normalized distribution ff(x)/~,(l) of local maxima by numerical simulation for 
(a) the Bernoulli, (b) the tent, and (c)the logistic maps deduced numerically using 100,000 
realizations and a mesh size Ax = 0.01. 
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6. CONCLUDING REMARKS 

We have identified a number of qualitative and quantitative features of 
extreme value distributions generated by chaotic dynamical systems in the 
regimes of fully developed chaos and of intermittent chaos. 

The most important single conclusion from our investigation is that 
deterministic chaos leaves a clearcut signature in the extreme value proper- 
ties. First, the cumulative extreme value distributions and their associated 
densities are, respectively, nondifferentiable and discontinuous on a set of 
points belonging to the periodic orbits of the system. For short data sets 
the result is completely different from the distributions derived in the classi- 
cal statistical theory of extremes. As the number of data tends to infinity 
the points of nondifferentiability (or of discontinuity in the density) define 
a dense set: despite an overall resemblance with the statistical distributions 
of the classical theory, deep differences in structure subsist. The differences 
become even more radical for such properties as the distribution of local 
maxima, which actually reflect the short-time properties of the dynamics 
even for arbitrarily long time series. 

The specific examples considered in the present paper have been 
limited to one-dimensional recurrences. Future investigations in this area 
should aim at higher-dimensional chaos and, especially, at continuous-time 
dynamical systems. Furthermore, it would be desirable to analyze the 
statistics of extremes generated from realistic physical models describing 
hydrodynamic or chemical chaos, or from models of atmospheric circula- 
tion. More importantly, the experimental data available on extreme values 
should be reconsidered in the light of the results reported in this work: in 
particular, the possibility of using extreme value distributions as a tool to 
obtain qualitative and quantitative measures that differentiate between 
deterministic chaos and random processes should be assessed. This is likely 
to provide new insights into the challenging problem of the prediction of 
extreme events. 

A C K N O W L E D G M E N T S  

We are indebted to M. Malek Mansour, M. Mareschal, J. W. Turner, 
and C. Van den Broeck for helpful discussions. This work is supported, in 
part, by the SSTC of Belgium under the Global Change and P61es 
d'Attraction Interuniversitaires programs and by the European Commission 
under the Environment and the Human Capital and Mobility programs. 

REFERENCES 

1. K. Lindenberg and B. J. West, J. Stat. Phys. 42:201 (1986). 
2. T. A. Buishand, Stat. Neerland. 43:1 (1989). 



336 Balakrishnan et  al.  

3. E. J. Gumbel, Statistics of Extremes (Columbia University Press, New York, 1958). 
4. J. Galambos, The Asymptotic Theory of  Extreme Order Statistics (Wiley, New York, 

1978). 
5. M. R. Leadbetter and H. Rootzdn, Ann. Prob. 16:431 (1988). 
6. M. R. Leadbetter, G. Lindgren, and H. Rootzdn, Extremes and Related Properties of  

Random Sequences and Processes ( Springer-Verlag, New York, 1983). 
7. G. Nicolis and I. Prigogine, Exploring Complexity (Freeman, San Francisco, 1989). 
8. C. Nicolis and G. Nicolis, eds., Irreversible Phenomena and Dynamical Systems Analysis 

in the Geosciences (Reidel, Dordrecht, 1987). 
9. E. N. Lorenz, Tellus 36A:98 (1984). 

10. P. Bergd, Y. Pomeau, and C. Vidal, L'ordre dans le chaos (Hermann, Pads, 1984). 
11. H. G. Schuster, Determh~istic Chaos, 2nd ed. (VCH Verlag, Weinheim, 1988). 
12. C. Gyorgyi and P. Szepfalusy, Z. Phys. B. Cond. Matter 55:179 (1984). 
13. P. C. Hemmer, J. Phys. A: Math. Gen. 17:L247 (1984). 
14. N. G. de Bruijn, Asymptotic Methods in Analysis (Dover, New York, 1981 ). 


